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Radio frequency interference (RFI) 
represents a serious threat for 
the satellite industry. In satellite 

communications (SATCOM), though 
a small amount of satellite capacity is 
affected at any time by interference, 
85–90 percent of the SATCOM custom-
er issues are related to RFI (see M. Cole-
man in the Additional Resources section 
near the end of this article). According to 
the Open 2015 SA Users Meeting General 
Forum, this represents the single most 
important operational problem affect-
ing customer service on geostationary 
satellites. 

The majority of interference cases 
still come down to human error or 
equipment failure, with intentional 

interference (jamming) counting for less 
than five percent of interference cases. 
However, this is increasing dramatically. 
Detecting and localizing the source of 
RFI is becoming a priority in today’s 
satellite industry generally and in the 
GNSS community in particular. Indeed, 
localization provides the required essen-
tial information to the authorities on the 
location of the RFI source and the time 
of such interference events, enabling 
them to take appropriate actions to 
eliminate such interference sources and 
prevent them from re-appearing.

This article discusses the theoretical 
background on interference localization, 
focusing on the single interferer case. 
The traditional approach to localize the 
source of an interference signal requires 
two steps: 
1) generation of location measurements: 

first the interference signal must be
processed in order to extract some
features providing information on
the interferer state (position and, pos-
sibly, velocity);

2) localization of the interference
source: multiple collected measure-
ments (generated simultaneously
and/or at different time instants) are
used as the inputs of a localization
algorithm in order to generate an
estimate of the interferer state.
Both steps are described in detail

throughout the article, providing exam-
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ples of location measurement types and 
of techniques to estimate such location 
measurements and perform the final 
localization. A second article in this 
Working Papers series will appear in 
a subsequent issue of Inside GNSS and 
discuss the application of the techniques 
described here to GNSS interference 
localization. That article will present 
simulation results for both the ground 
and space GNSS interference localiza-
tion architectures.

As an illustrative example, the left 
side of Figure 1 depicts a set of location 
measurements, represented by black 
crosses, and the associated interferer 
location estimate, represented by a red 
point. In Figure 1, a single location mea-
surement coincides with a point in the 
space, allowing us to simplify the repre-
sentation; however, in general a location 
measurement defines a loci of points in 
the space, which we will discuss in more 
detail later in this article. 

If multiple interferers are present and 
must be localized, an additional inter-
mediate step is required: different loca-
tion measurements must be assigned to 
different interferers, such that different 
subsets of the collected measurements 
are exploited to localize different inter-
ferers. The right side of Figure 1 illus-
trates this situation in which the total 
set of measurements is divided into two 
subsets, and two independent localiza-
tions are performed exploiting the two 
subsets of measurements. 

There are many ways of splitting a 
set of n measurements into two subsets 
(precisely 2n–1 including the possibility 
of assigning all measurements to a single 
interferer). The situation gets worse if 

the number of interferers is larger, and 
even worse if the number is unknown. 
Multiple-hypothesis tracking techniques 
jointly perform the assignation step 
(including the interferer number esti-
mate, in cases where it is unknown) and 
the localization step, keeping in memory 
multiple assignation possibilities (named 
“hypotheses”). This results in multiple 
possibilities for the estimated number of 
interferers and the estimated location for 
each of them. We will not treat the case 
of multiple interferer localization here, 
but interested readers may learn more in 
the article by L. D. Stone et alia (Addi-
tional Resources). 

Location Measurement Generation
The localization of an interferer requires 
the extraction of features from the infer-
ence signal providing information on 
the state (position and, possibly, veloc-
ity) of the interferer. We will now pres-
ent a series of location-dependent mea-
surements that can be obtained from an 
interfering signal. 

A time of arrival (ToA) measurement 
represents the time a signal takes to trav-
el from the transmitting source to the 
receiver (i.e., the propagation time), and 
can be written as: 

where  is the transmitter-to-
receiver distance, which depends on the 
transmitter position (x,y,z), c is the speed 
of light, and  represents a possible mea-
surement error. 

All the points that are equidistant 
from the receiver are associated with the 
same ToA value as shown in the upper-
left sub-figure of Figure 2, where the blue 
cross represents the transmitter position, 
the red triangle represents the receiver 
position, and the green circle is the ToA 
locus of points assuming  = 0. Because 
the ToA requires an accurate knowledge 
of the time at which the signal is trans-
mitted, in the context of interferer local-
ization we can generally not estimate 
such a measurement unless the signal 
itself contains a timing feature. 

A time difference of arrival (TDoA) 
measurement represents the difference 
of the time instants at which a signal is 

received at two different receivers, and 
can be written as: 

where  and  are the 
distances from the transmitter to the 
first and second receivers, respectively, 
which depend on the transmitter posi-
tion (x,y,z); c is the speed of light, and 
 represents a possible measurement 

error. 
All the points such that the difference 

between the distances to each receiver 
is constant are associated with the same 
TDoA value. Hence, the locus of points 
satisfying a given TDoA measurement 
is a hyperbola in a two-dimensional 
space and a hyperboloid in a 3D space. 
The upper-right sub-figure of Figure 2 
illustrates this measurement, where the 
blue cross is the transmitter position, the 
red triangles are the receiver positions, 
and the green circle is the TDoA locus 
of points assuming  = 0 (For details, see 
the article by Y. T. Chan and K. C. Ho in 
Additional Resources.) 

A frequency of arrival (FoA) measure-
ment represents the frequency shift (i.e., 
the Doppler) at which a signal is received 
by a receiver and can be written as: 

where  is the relative speed vec-
tor between the receiver and the trans-
mitter,  is the angle between 

 and the vector connecting 
the receiver to the transmitter, f0 is the 
carrier frequency, c is the speed of light, 
and  represents a possible measure-
ment error. 

In the case where the transmitter 
is static, the vector  does not 
depend on the transmitter position 
(x,y,z), and all the points with constant 
angle  are associated with the 
same FoA value. Hence, in this case the 
locus of points satisfying a given FoA 
measurement is represented by two 
half-lines departing from the receiver 
position. It is symmetrical with respect 
to the receiver velocity in a 2D space 
and by a cone whose apex is the receiver 
position and axis is the receiver velocity 
in a 3D space. In the case where  = 0 

FIGURE 1 Single interferer localization (left 
side) and multiple interferer localization 
(right side). The crosses and red points 
represent the collected measurements 
and the interferer position estimates, 
respectively. All crosses within the same 
ellipse are assigned to the same estimated 
interferer. 
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such a curve crosses the actual position of the transmitter. 
The lower-left sub-figure of Figure 2 shows this situation, 

where the blue cross is the transmitter position, the red tri-
angle is the receiver position, the black arrow is the receiver 
velocity, and the yellow half-lines represent the TDoA locus of 
points, assuming  = 0. Because the FoA requires an accurate 
knowledge of the signal carrier frequency (otherwise the Dop-
pler cannot be subtracted from the received frequency), in the 
context of interferer localization we generally cannot estimate 
such a measurement.

A frequency difference of arrival (FDoA) measurement rep-
resents the difference between the frequency shifts (i.e., the 
Doppler) at which a signal is received by two different receiv-
ers and can be written as: 

where  and  are the relative speed vectors 
between the two receivers and the transmitter,  is 
the angle between  and the vector connecting the 
first receiver to the transmitter (analogous to , f0 is 
the carrier frequency, c is the speed of light, and  represents 
a possible measurement error. In the case of a static transmit-
ter, the vectors  and  do not depend on the 
transmitter position (x,y,z). 

The locus of points of an FDoA measurement is not a stan-
dard geometric shape as seen in brown in the lower-right sub-
figure of Figure 2 assuming  = 0, where the blue cross is the 
transmitter position, the red triangles are the receiver posi-
tions, and the black arrows are the receiver velocities. Note that 

the exploitation of an FDoA measurement 
requires the knowledge of the carrier fre-
quency (f0 appears in the above equation); 
however, a small relative error on the car-
rier frequency estimation causes only a 
small perturbation of the locus of points.

A received signal strength (RSS) mea-
surement represents the attenuation asso-
ciated with the signal propagation from 
the transmitter to the receiver and can be 
written as:

where  is the transmitter-to-
receiver distance, which depends on the 
transmitter position (x,y,z), np is the path 
loss factor, and  represents a possible mea-
surement error. 

All the points that are equidistant from 
the receiver are ascribed the same RSS 
value. Hence, similarly to the ToA case, 
the locus of points satisfying a given RSS 
measurement is a circle in a 2D space (as 
shown by the upper-left sub-figure of Fig-
ure 2), and a sphere in a 3D space. Because 

the RSS requires an accurate knowledge of the power at which 
the signal is transmitted, in the context of interferer localiza-
tion we generally cannot estimate such a measurement.

A received signal strength difference (RSSD) measurement 
represents the difference of the attenuations associated with 
the signal propagation from the transmitter to two different 
receivers, and can be written as:

where  and  are the distances from the 
transmitter to the first and second receivers, respectively, which 
depend on the transmitter position (x,y,z); np is the path loss 
factor, and  represents a possible measurement error. 

All the points whose ratio between the distances to each 
receiver is constant are associated with the same TDoA value. 
Hence, the locus of points satisfying a given RSSD measure-
ment form a circle in a 2D space (a sphere in a 3D space), 
centered along the line connecting the two receivers and 
including only one of the two receivers, the one closer to the 
transmitter. If the transmitter is equidistant to the receiv-
ers, such a circle (sphere) degenerates to the line (plane) that 
is the perpendicular bisector to the segment connecting the 
two receivers. The RSSD requires an accurate knowledge of 
the path loss factor np. This factor is impacted by effects that 
are difficult to predict and compensate for, such as shadowing 
and multipath. 

An angle of arrival (AoA) measurement represents the angle 
of the vector connecting a receiver to the transmitter with 
respect to a reference direction (in a 2D or 3D space) or a ref-
erence system (3D space). Denoting such an angle as , 

FIGURE 2  Loci of points associated with ToA, TDoA, FoA,  FDoA, RSS, and AoA measurements. 
The blue crosses are the transmitter positions, the red triangles are the receiver positions, 
and the black arrows represent either the receiver velocities (for FoA or FDoA), or reference 
directions (for AoA).
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which is a function of the transmitter posi-
tion (x,y,z), the AoA measurement can be 
written as: 

where  represents a possible measurement 
error. 

If the AoA is computed with respect to a 
reference direction, the AoA locus of points 
is equivalent to the FoA locus of points: two 
half lines in a 2D space (as shown by in the 
lower-left sub-figure of Figure 2, where the 
black arrow represents in this case the ref-
erence direction), or a cone in a 3D space. 
If the AoA is computed with respect to a 
reference Cartesian system in a 3D space, then  is actu-
ally a pair of angles, representing the azimuth and elevation 
with respect to the Cartesian system. In this case, the locus of 
points is a half-line departing from the reference position, or 
two half-lines if the sign of the elevation angle is uncertain. 

Choosing and Generating the Measurement Types
In the context of interferer localization, because the informa-
tion about the state of the signal at the transmitter is in general 
not available (e.g., transmitting time, transmitting power, car-
rier frequency), the most promising measurement types are the 
TDoA, FDoA, and AoA. We will now address possible signal 
processing to estimate such measurements. 

A single TDoA measurement and a single FDoA measure-
ment associated with a transmitter and a pair of receivers 
can be obtained by computing the cross ambiguity function 

 between the signals s(t) and g(t) received by 
the two antennas during a common acquisition time interval 
[t1, t1 + T] (as discussed in the paper by G. D. Hartwell in Addi-
tional Resources): 

The values Δt* and Δf* at which  is maximized 
represent the estimated TDoA and FDoA measurements, 
respectively. For a given value of Δf, the CAF is equivalent to 
a correlation between the signal s(t) shifted in frequency by an 
amount Δf and the signal g(t). As this correlation is in general 
performed after the signals are acquired and sampled, in prac-
tice the integral is actually a sum: 

where Ts is the sampling time, n1Ts is the beginning of the acqui-
sition time interval, which corresponds to the time at which the 
TDoA measurement is evaluated, and K . Ts is the length of the 
acquisition time interval. 

The foregoing function must be computed for a range of 
possible time and frequency shifts. For example, the TDoA can-
not be larger, in absolute value, than the time a signal takes to 
travel from one antenna to the other, i.e., |TDoA| ≤ d/c, where 
d is the distance between the two antennas and c is the speed 
of light. The CAF function can be fitted or interpolated in the 

time domain in order to estimate the CAF peak with a time 
resolution that is better than the sampling time Ts.

We can obtain an AoA measurement in multiple ways. The 
most intuitive approach consists of taking and comparing 
amplitude measurements at different angles. This can either 
be performed by a single moving antenna scanning sequentially 
different angles, or by a set of fixed antennas that are oriented 
toward different angles. The latter approach is often referred to 
as amplitude comparison monopulse (ACM). 

Figure 3 (left side) presents a possible planar architecture of 
the ACM technique, which is taken from A. De Martino (see 
Additional Resources). In this 2D example, four antennas are 
employed to estimate the AoA of a signal. Each antenna faces 
toward a specific quadrant. This means that the angle between 
the pointing directions of adjacent antennas, often referred to 
as the “squint angle,” is 90 degrees. In this example, 90 degrees 
is also the three-decibel beamwidth of each antenna pattern, 
meaning that at least one antenna receives the signal within the 
three-decibel beamwidth of the main lobe. As a consequence, 
this antenna architecture covers a span of 360 degrees. 

The AoA of the signal lies in the angular area between the 
antenna receiving the largest power and the antenna receiving 
the second largest power. This AoA can be obtained more accu-
rately by computing the difference between these two received 
powers, and normalizing the results with respect to the sum 
of the two powers. If the antenna patterns and squint angle are 
properly designed, such a normalized difference is about linear 
with respect to the AoA (at least in the 90-degree angular span 
between the two antenna pointing directions). Hence, the AoA 
value can be unequivocally retrieved from the normalized dif-
ference. Smaller squint angles allow for achieving better accu-
racies, at the cost of requiring a larger number of antennas to 
cover the required angular span. 

A similar approach can be adopted for a 3D space. In this 
case, in order to find both the azimuth and elevation angles 
with respect to an x-y-z Cartesian system, the antenna pointing 
directions must not lie in the same plane. The illustration on 
the right-hand side of Figure 3 shows a four-antenna implemen-
tation of the ACM technique to estimate the AoA of a signal 
coming from below of an airplane. In this representation, the 
four antennas are located at the same point and oriented to 

FIGURE 3  Possible arrangement of four antennas to implement the ACM technique, for a 2D 
space (left side, taken from A. De Martino) and for a 3D space (right side)

Yaxis

Xaxis



www.insidegnss.com 	 N O V E M B E R / D E C E M B E R  2 0 1 6 	 InsideGNSS	 63

four different angles covering a limited angular span. Note that 
antenna colocation is not a requirement, in particular if the 
interferer is located far below the airplane.

We can also derive the AoA from a TDoA measurement if 
the interferer is much farther away than the distance d sepa-
rating the two receivers. Indeed, under this assumption the 
interferer signal can be approximated by a planar wave, which 
arrives at a certain angle with respect to the segment connect-
ing the two receivers, and such an angle unequivocally defines 
the extra path that the signal must cover to reach the farther 
antenna. 

Another way to realize that the TDoA is linked to the AoA 
for a far transmitter is by considering the fact that the hyper-
bola (hyperboloid), defining the locus of points of a TDoA mea-
surement, has a linear (conical) asymptote, which corresponds 
to the locus of points of an AoA measurement. Mathematically, 
the AoA and the TDoA are linked by:

Finally, there exist different techniques with which to exploit 
the phase of a narrowband signal transmitted by a far source 
and received by multiple receivers. This approach is similar in 
philosophy to the TDoA approach just described. Indeed, for a 
continuous signal (which is on the extreme of the narrowband 
signal class) a one-to-one correspondence exists between the 
differential time and the differential phase at which a signal is 
received at two receivers, assuming that the receiver separation 
is not larger than half a wavelength. 

Among all the techniques exploiting the different phases 
of the signals acquired by multiple receivers, the most famous 
and widely adopted one is probably the MUltiple SIgnal Clas-
sification (MUSIC) technique (described in M. Hajian et alia). 
MUSIC was devised as a form of super-resolution direction-
finding technique for processing the signals received by an 
antenna array of M antenna elements, to obtain estimates of 
the AoA of multiple signal components. It is in a family of 
processes called subspace-based processing and is based on an 
eigen-decomposition of the covariance matrix derived from 
data samples to obtain two orthogonal matrices, which repre-
sent the signal-subspace and the noise-subspace. 

The MUSIC algorithm can be summa-
rized as follows: 
Step 1: Collect input samples x(k) at mul-
tiple time instants k = 1, ... , N and estimate 
the input covariance matrix 

Step 2: Perform eigen-decomposition of  
in order to get the M eigenvalues λ1 ≥ λ2 ≥ 
... ≥ λM and the M associated eigenvectors 
ν1, ν2 ... νM .
Step 3: Estimate the number of incident 
signals  where K is ideally the 
multiplicity of the smallest eigenvalue. 

In practice, because  is estimated 

through a finite number of samples and therefore is affected 
by estimation errors, the eigenvalues will all be different. In 
this case K can be estimated as the number of small eigenval-
ues that are closely spaced. 

Step 4: For each possible pair of angles of arrival (θ, ϕ), rep-
resenting azimuth and elevation with respect to the reference 
Cartesian system, compute the MUSIC spectrum:

where , denotes the Hermitian trans-
pose operator, α(θ, ϕ) is the “steering vector,” which is given by:

and

is the phase shift observed by the i-th antenna with respect to 
the origin of the reference system, for an incoming wave with 
frequency f and incident angles (θ, ϕ).
Step 5: Find the  largest peaks of  to obtain the esti-
mates of the AoA of the incident signals. 

A common antenna arrangement for the MUSIC algorithm 
is the uniform circular array geometry in which the M anten-
nas are placed along a circumference at equispaced distances. 
Such a disposition is shown for M = 5 antennas on the left side 
of Figure 4, and in this case the antennas represent the vertex 
of a pentagon.

It is important to note that, for a planar array, the MUSIC 
spectrum is symmetric with respect to the plane in which the 
antennas lie. As a consequence, a pair of peaks appears for each 
incident signal component: one is associated with the actual 
direction of arrival, while the other is a “ghost peak” (see right 
side of Figure 3), which must be somehow discarded. 

In fact, to remove such ambiguity, the planar array should 
be placed such that no signal can reach the array from one of 
the two sub-spaces defined by the plane in which the antennas 
lie. In this case, we can limit the search for the MUSIC spec-
trum peaks to only the relevant sub-space and more specifically 

FIGURE 4   Representation of the uniform circular array disposition (left side) and of the MUSIC 
spectrum in which both the actual peak and the ghost peak appear (right side).
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to the relevant angles coming from the 
relevant subspace. (By limiting the field 
of view, we can also limit the angles at 
which we need to look.) 

Localization
Figure 2 shows that a single location-
dependent measurement does not allow 
for accurately localizing an interferer: 
all the points belonging to the loci of 
points of the measurement represent 
possible positions of the interferer. 
In order to resolve such ambiguity 
multiple location measurements are 
required. Such measurements may 
be collected simultaneously (e.g., N 
receivers collecting N-1 TDoA mea-
surements), or sequentially at different 
instants (e.g., two receivers collecting a 
single TDoA every 10 seconds), or with 
both approaches (e.g., N receivers col-
lecting N-1 TDoA measurements every 
second). Also, they may be of the same 
type or of different types (e.g., N receiv-
ers collecting N-1 TDoA and N-1 FDoA 
measurements every second). 

Once a set of measurements is avail-
able, the goal of a localization technique 
is to find a point in the space that agrees 
with the observed measurements, with 
said point representing the estimate of 
the transmitter position. Geometrically, 
this is equivalent to finding the intersec-
tion of the loci of points associated with 
the measurements. 

The left side of Figure 5 shows, in a 
unique picture, the loci of points that 
Figure 2 shows in different sub-figures. 
The ToA and FoA measurements refer 
only to the first receiver (two ToA and 

two FoA measurements could be taken 
by two receivers). In this specific sce-
nario, all the loci intersect exactly at 
two points: one represents the actual 
interferer position, the other one is a 
point that is symmetric to the interfer-
er position with respect to the x-axis. 
This symmetry occurs because both 
segments connecting the two receivers 
and the receiver velocities lie along the 
x-axis. 

Unless prior knowledge on the inter-
ferer position allows for excluding all 
the subspace y < 0, this example shows 
the necessity of having a “heterogeneous 
geometry” (e.g., receivers not aligned in 
space, velocity vectors not aligned with 
respect to the segment connecting the 
receivers, and so forth) in order to avoid 
symmetric scenarios that may lead to 
ambiguities.  

A fundamental point missing in the 
above discussion is that measurements 
are in general affected by errors. This 
means that the loci of points associated 
with the noisy measurements do not 
pass exactly through the actual interfer-
er position, and they do not cross exactly 
on the same point. 

This situation is represented on the 
right side of Figure 5. In this case the 
localization technique must find the 
point of the space that “best fits” the 
observed measurements. This concept of 
“fitting” is usually expressed, in math-
ematical terms, through a least-squares 
problem, which tries to minimize the 
sum of the squares of the distances of the 
loci of points from the estimated posi-
tion. Geometrically, this means finding 

a point in the space as close as possible 
to all the loci.

With more measurements available, 
the more precise the solution of such 
a least-squares problem will become. 
Moreover, if the accuracies associated 
with the collected measurements are 
available (e.g., if TDoA and FDoA mea-
surements are affected by i.i.d. Gaussian 
errors with standard deviations σTDoA and 
σFDoA), we can weight each measurement 
appropriately by considering how much 
the loci of points of that measurement 
can oscillate around the actual interferer 
position. This requires rescaling each 
measurement type by an appropriate 
geometric factor and solving a weighted 
least-squares problem. 

Multiple ad hoc solutions have been 
proposed and studied in the literature 
to aggregate specific types of measure-
ments. See, for example, as cited in the 
Additional Resources section, M. Hajian 
et alia considered a two-stage maximum 
likelihood technique to aggregate TDoA 
measurements, I. Guvenc et alia studied 
an approximate maximum likelihood 
technique for TDoA and FDoA mea-
surements to overcome the required 
computational burden by translating the 
non-convex problem to a convex func-
tion, and D. Musicki and W. Koch used 
a Gaussian mixture measurement filter 
approach to aggregate TDoA and FDoA 
measurements.

This article, instead of considering 
different ad hoc approaches, focuses 
on two general techniques that can be 
adopted to aggregate whatever mea-
surements types are available. The first 
technique, the Taylor Series (TS), is a 
batch technique that is particularly use-
ful when the target to locate is stationary 
or moving slowly. The second technique, 
the extended Kalman filter (EKF), is a 
sequential technique that is able to track 
the trajectory of a moving target, esti-
mating both its position and its velocity. 

Taylor Series Technique 
The Taylor-Series (TS) estimation 
discussed by W. H. Foy (Additional 
Resources) (or Gauss-Newton interpo-
lation) is an iterative scheme to compute 
the solution of a set of algebraic (in gen-
eral non-linear) equations. 

FIGURE 5   Intersection of the loci of points associated with ToA (or RSS), TDoA, FoA (or AoA), 
and FDoA measurements, both in the ideal case (left side), and in the case where they are af-
fected by errors (right side). The blue cross is the interferer position, the red triangles are the 
receiver positions, and the black arrows represent the receiver velocities. 
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Figure 6 shows a schematic representation of the Taylor-
series estimation techniques applied to interference localiza-
tion. It receives as input a set of location measurements mi, i = 
1, ..., n, with the associated error covariance matrix R, and it 
outputs a position estimate  along with the covariance 
matrix Q associated with such position estimate. To do so, TS 
starts with a rough initial guess of the position estimate and 
iteratively improves it by determining local corrections, until 
the algorithm converges. 

The first step of this iterative approach consists of rescal-
ing the location measurements  and the error 
covariance matrix R, to obtain the rescaled measurements 

 and the rescaled error covariance matrix  
The rescaling process consists of multiplying each location 
measurement by a factor that takes into account how far the 
locus of points of that location measurement would be from 
the interferer position in the case where that measurement is 
affected by a unit error. 

If the location measurements are of different types, this 
procedure is particularly effective in order to weight the 
measurement errors properly, expressing everything in 
terms of distances. Because the rescaling factor depends on 
the interferer position, the rescaling process must be per-
formed at every iteration, whenever a new position estimate 
is generated. 

A rescaled location measurement can be expressed in the 
following way: 

where fi(x,y,z) is the function defining how the rescaled mea-
surement  is connected to the state (x,y,z); x,y,z are the true 
(unknown) coordinates of the interference source;  is the error 
of the i-th rescaled measurement; and the vector  
is assumed to be a zero mean multivariate Gaussian noise with 
covariance 

The subsequent step consists of linearizing (through a first-
order expansion) the functional forms of the rescaled measure-
ments around the current position estimate, obtaining the fol-
lowing matricial equation, which approximates well the real 
one around the current position estimate:  

where

Next, the solution  of the matricial equa-
tion  must be computed. The solution represents the 
correction term to apply to the current position estimate in 
order to improve it (locally). The matricial equation  is 
in general overdetermined; hence, the solution  must be com-
puted with respect to a certain criterion, considering also the 
statistic of the errors affecting the location measurements. A 
commonly adopted criterion is the minimization of the squared 
Mahalanobis length of the residual vector, whose solution is 
given by the generalized least square method:

Note that, for independent errors, this is equivalent to a 
weighted least-squares method, which minimizes the sum-
squared error with the terms in the sum that are weighted 
according to the inverse of the corresponding error variances 
(hence giving more importance to more accurate measure-
ments). Further, if the errors are also identically distributed 
then it is equivalent to a least-squares method. 

Exploiting the correction term , the new position estimate 
is simply given by:

where  is the current position estimate and the arrow 
represents the assignment operator. 

These steps must be performed at each 
iteration until the algorithm converges. To 
check the convergence, it is possible to look 
at the correction term: 

 

If  is smaller than a pre-selected thresh-
old, the algorithm has converged. Con-
versely, if  is large and decreases after 
some iterations or if a maximum number 
of iterations is reached, then the algorithm 
fails to converge. 

Significantly, the TS estimation tech-
nique converges to a local maxima of the FIGURE 6  Schematic representation of the Taylor-Series estimation technique
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original problem. Hence, although experience indicates that 
the initial position guess can be quite far off without prevent-
ing good convergence, it may be convenient to perform the 
TS estimation technique multiple times with different initial 
positions, and maintain the solution that best agrees with the 
observed measurements.

Finally, it is worth noting that the generalized least square 
method also provides the covariance matrix Q of the errors of 
the position estimate: 

Q gives the statistics of the position estimate. For example, 
with the assumption that the error distribution is Gaussian, 
the η-confidence set of the position estimate (i.e., the small-
est volume set that includes the real interferer position with 
a probability of at least η) is given by the ellipsoid centered in 

 with the semiaxes given by  where, α is the 
value at which the cumulative density function of a chi-squared 
distribution with three degrees of freedom is equal to η, and ui 
are (orthonormal) eigenvectors of Q with eigenvalues λi. 

Alternatively, it is possible to transform the uncertainty 
Q expressed in the XYZ coordinates into the corresponding 
uncertainty in the East, North and Up (ENU) coordinates (in 
case the XYZ system is not already aligned with the ENU sys-
tem), and then compute the horizontal and vertical position 
accuracies. Let T be the transformation matrix of ENU coordi-
nates to XYZ, whose columns are the orthonormal vectors e, n, 
u expressed in the XYZ coordinate system at the point of lon-
gitude ϕ and latitude φ corresponding to the position estimate:

hence, 

where σE, σN, and σU define the accuracies toward the east, 
north, and vertical directions, respectively;  
defines the accuracy in the horizontal plane, and 

 

defines the accuracy in the tridimensional space. σU and σH 
are also known as vertical dilution of precision and horizontal 
dilution of precision, respectively. σH is the radius of the circle 
in the East-North plane that contains the real position with 
probability 0.65, whereas 2 . σH is the radius of the circle that 
contains the real position with probability 0.95. 

Other useful measures are the circular error probable (CEP) 
and the spherical error probable (SEP), which are the radius of 
the circle and of the sphere, respectively, that include the real 
position with probability 0.5. They are computed as 

for σN > σE . Note that the roles are inverted for σN ,> σE, and 

Extended Kalman Filter Technique
The extended Kalman filter (EKF) is the non-linear version of 
the Kalman filter, in which non-linearities are approximated 
by a linearized version around the current state estimate. It is 
a sequential technique that produces estimates of unknown 
variables by using Bayesian inference. This means that it keeps 
in memory a state estimate  and the uncertainty associated 
with said state estimate, quantified by a covariance matrix Pk 
(the subscript k is used to denote a specific time instant).  

Further, whenever new measurements (with the associated 
accuracies) are available, the state estimate and the associated 
uncertainty are updated, exploiting the additional information 
carried by the new measurements. The EKF must be initialized 
with an initial state estimate with the associated uncertainty. 

Figure 7 shows a schematic representation of the EKF esti-
mation techniques applied to interference localization. At time 
instant k the EFK receives as input a set of location measure-
ments mi,k , i = 1, ... , n, with the associated error covariance 
matrix Rk, and outputs a position estimate  along with the 
covariance matrix Pk associated with the position estimate. The 
subscript k, representing the current time instant, is used to flag 

the fact that the EKF technique is sequen-
tial: the current estimate depends both on 
the new measurements and on the previous 
estimate performed at time instant k–1.  

As with the TS technique, the first step 
of the EKF technique involves rescaling 
the location measurements such that mea-
surements of different types are weighted 
properly. Such rescaled measurements are 
then aggregated with the last state estimate 
performed by the EKF technique.

The model the EKF is based on is 
described by the following two equations:

WORKING PAPERS

FIGURE 7  Schematic representation of the Extended Kalman Filter estimation technique
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where xk is the real current state to esti-
mate, h(.) is the function defining how 
the state evolves in time, wk is a noisy 
term that takes into account that the real 
state evolution may not follow exactly 
the deterministic model defined by the 
function h(.), wk is assumed to be zero 
mean multivariate Gaussian noise with 
covariance Qk;  is the i-th current 
rescaled measurement; fi(.) is the func-
tion defining how the current i-th res-
caled measurement  is connected to 
the current state xk; and,

 is the error of the i-th res-
caled measurement, with the vector 

 assumed to be zero 
mean multivariate Gaussian noise with 
covariance , which is obtained by res-
caling the covariance matrix Rx.

In the context of interference local-
ization, the state estimate xk includes 
the position of the interferer and possi-
bly its velocity if the interferer might be 
dynamic. In this case, the function h(.) 
represents the (assumed) motion model. 

The current state estimate  is 
obtained from the previous state esti-
mate  and the current rescaled 
measurements 
through the following two steps, which 
are graphically represented in Figure 8:

Prediction step: The previous state 
estimate  is propagated up to the 
current time instant exploiting the 
motion model, obtaining: 

where:
 denotes the state estimate at step k 

obtained before exploiting the new mea-
surements mk;

 is the covariance matrix associ-
ated to ; and,

 if the Jacobian of the function h(.) 
in 

: 

Measurement update step: The pre-
dicted state estimate is merged with the 
new observed measurements, obtaining 
the final state estimate: 

where:

 is the measurement 
residuals computed with respect to the 
predicted state: 

Kk is the Kalman gain matrix:
 ;

Fk is the Jacobian of the function f(.) in 
the predicted state 

Sk is the innovation covariance:
  .

Conclusions and Future Work 
This article discussed the theoretical 
aspects associated with single-interfer-
er localization approaches, describing 
how to extract different types of location 
measurements from the received inter-
ference signal and how to compute a 
position fix by aggregating the collected 
location measurements. 

We focused on two techniques to 
aggregate the collected location mea-
surements: the Taylor Series and the 
extended Kalman filter techniques. The 
former is a batch and iterative scheme 
to compute the solution of a set of alge-
braic equations, starting with a rough 
initial guess of the position estimate 
and iteratively improving it by deter-
mining local corrections. The latter is a 
sequential technique that produces esti-
mates of unknown variables by using 
Bayesian inference, keeping in memory 
a state estimate that is updated as soon 
as a new location measurement is avail-
able. Both techniques have the great 
advantage that they can incorporate 
heterogeneous types of location mea-
surements, weighting each measure-
ment appropriately.

The application of the techniques 
discussed in this article to GNSS inter-
ference localization will be examined in 
a subsequent Working Papers column, 
which will present simulation results 
for both the ground and space GNSS 
interference localization architectures. 
In addition to this follow-on article, the 
authors are currently working on devel-
oping and analyzing multiple hypothesis 
tracking techniques for space systems 
that are required to detect and localize 
multiple sources of interference.
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